Every morning I set off to the river and to my refuge, the Bosque, walking under dying cottonwoods whose bark is peeling away from dead tree limbs. Just in the past summer a few of these magnificent matriarchs have crashed to earth providing nutrients that will one day support some other kind of ‘tree of life’.

My dreams tell me that new as yet unknown species will begin life here, offering me comfort because as a dreamer I have learned that my dreaming body knows what I do not, no doubt because she is attached to the body of this precious earth.

When I pass by the coyote willows I think about how cottonwoods, aspens, and poplars are part of the Willow family. Recent genetic testing reveals that this diverse group also includes passiflora (my beloved passionflowers) and wild violets too! – I was astonished by this last piece of information until I realized that all require adequate water to thrive.

Coming from the Northeast where quaking aspen can be found throughout the state of Maine I was still surprised to learn that these trees stretch across the entire continent. Aspens hold the title of being the most widespread tree in North America. They can be found from the Midwest, across Canada, north into Alaska and across the West through to Arizona and into New Mexico.

One aspen tree is actually only a small part of a larger organism. A stand or group of aspen trees is considered a singular organism with its central life force hidden underground in an extensive root system that I think is analogous to the human brain (I am not alone in this speculation). Before a solitary aspen trunk appears above the surface, the root system may lie dormant for many years until conditions are just right. In a single stand, each tree is a genetic replicate of the other, hence the name – a “clone” of aspens used to describe a stand.

Older than the massive Sequoias or the Bristlecone Pines, when the Pando clone was discovered, scientists named it with a Latin word that means “I spread.” Pando is an aspen clone that originated from a single seed and increases by sending up new shoots from its underground expanding and complex root system.

Pando is believed to be the largest, most dense organism ever found on earth. It weighs nearly 13 million pounds (6,600 tons). The clone spreads over 106 acres, consisting of over 40,000 individual trees. The exact age of the clone and its root system is difficult to calculate, but it is estimated to have started at the end of the last ice age. It was first recognized by researchers in the 1970s and more recently proven by geneticists. Its massive size, weight, and prehistoric age have caused worldwide fame.

Located in central Utah (Fishlake National Forest), Pando is dressed in verdant green throughout the summer. Her fluttering leaves bring relief from summer’s intense basin heat. In autumn the oranges and yellows and sometimes crimson leaves rival the most spectacular New Mexican sunset.

However, there is deep cause for concern because Pando is showing signs of decline. The organism is not regenerating, invasive insects are present, as are diseases. Unfortunately throughout the west, diebacks of other aspen stands are becoming more common. No one mentions climate change or loss of habitat as an issue.

The prevailing logic is that even if the trees of any stand are wiped out, it is still difficult to extinguish an aspen’s root system permanently due to the rapid rate in which it reproduces, thus there is hope.

It’s hard to decide what is most memorable about aspen: the vibrant gold leaves in fall, the startling pearl white stands, or the magical sound of the “quaking” leaves.

Among swaths of dark green conifers, the deciduous aspen stands thrive in a variety of environments. Aspens quickly colonize recently burned or bare areas (with birches in areas that support the latter like they do in Maine). They prefer moist soil but can survive near springs in desert conditions. Like the rest of the willow family these trees must have access to water. Because the Southwest is under siege from increasing drought as a result of climate change, I wonder if lack of adequate water is the reason why these trees are not regenerating.

One of the most fascinating aspects of aspens is that they grow all winter, a fact I didn’t know, but should have suspected because the trees around my house have a greenish cast. Beneath the thin, white outer bark layer is a thin green photosynthetic layer that allows the tree to create sugars and grow when other deciduous trees are dormant. This characteristic is unique among deciduous trees. During hard winters, the green, sugary layer provides necessary nutrients for deer and elk. Throughout the year, young aspens provide food for a variety of animals including moose, black bears, beaver, porcupine, grouse and rodents.

 

Comments are not available on this story.

filed under: